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NUMBEROF[ELLS
Effect of the number of cells on amplifiers with the same

width.

total gate

that the amplifier can be unstable at FC= 19 GHz and when g,..

becomes greater than 200 mS/mm (Fig. 5).

If the transconductance g~ changes from 145 mS/mm to

200 mS/mm, the theoretical gain curve in Fig. 5 presents a very

high gain around 20 GHz. The stability coefficient K becomes

less than unity in this-frequency range and the amplifier oscillates

at 20.5 GHz. The small difference between this value and the

predicted oscillation frequency ( FO) is due to the simplified

model used for the analysis.

To improve the gain, another possibility for distributed ampli-

fier design is to increase the number of cells. To improve the

frequency bandwidth or the flatness of the gain, the same tech-

nique can be used but with smaller transistors.

It is of interest to compare amplifiers with the same total gate

width but with a different number of cells.

Fig. 6 presents the minimum stability coefficient K of different

amplifiers based on the FET equivalent circuit in Section III

(Table II) with gtilo = 250 mS/mm and at frequency ~, (eq. (6)).

Two totaf gate widths have been considered. It can be seen that

to avoid instability, smaller total gate widths have to be used.

However, the lowest value is limited by the decreasing

gain-bandwidth product. Fig. 7 also shows that instabilities

occur with an increase in the number of cells. This phenomenon

is caused by the multiple feedback loops in the amplifier. How-

ever, it is considerably diminished when the losses are increased

where a large number of cells are used.

IV. DISTRIBUTED AMPLIFIER WITH CASCODE PAIRS

It is well known that using cascode pairs increases the gain of

distributed amplifiers. Moreover, the better isolation of this ar-

rangement should attenuate the oscillation phenomenon when

the transconductance is increased. This means that the reduction

of the coupling between the gate and drain lines makes it possible

to avoid oscillations by reducing the gain within the loop.

But another problem occurs in cascode distributed amplifiers.

Indeed, the insertion of transmission line lengths between com-

mon-source and common-gate FET’s is extensively used to in-

crease the gain at high frequency and also to tune the gain

response of the amplifier for optimum gain flatness. But these

line lengths can generate oscillations and therefore must be

carefully chosen as a function of the transconductance of the

active devices.

V. CONCLUSION

The occurrence of oscillations in distributed amplifiers has

been evaluated. The oscillation mechanism has been elucidated

using a simplified transistor model made up of four elements.

The anaJysis has been extended to amplifiers whose transistors

are represented by S-parameter derived models. It has been

demonstrated that increasing the transconductance of the transis-

tor can generate oscillations into the loops existing in distributed

amplifiers between stages at frequencies around

‘o”*&”

This phenomenon occurs when high-transconductance transistors

are used (HEMT devices, for example) and it can be reduced

using smaller transistors or higher cutoff frequencies.

Improvements in the gain-bandwidth product can be obtained

with high transconductances but need lower gate-to-drain feed-

back capacitances or other structures such as the cascode config-

uration to reduce the coupling effect between the gate and drain

lines.
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on the eigenvalues of the wave equation for this stroctnre is derived using
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the spectral theory of linear operators. The elements of the transfer matrix

for a layer of a gyromagnetic medium are given. A numerical example

confirming the validity of the theoretical results is included.

I. INTRODUCTION

Although layered guides containing gyrotropic material are

extensively utilized inmicrowave application [l]-[3], theunderly-

ing theory is less developed than the state of the art in the

analysis of isotropic structures. For this reason a new, generaf

approach to the” analysis of an arbitrary lossless parallel-plate line

with inhomogeneous gyromagnetic filling was proposed by the

authors [4]. The present paper develops and complements this

analysis, yielding exact expressions defining the global lower

bound on the eigenvalues of the characteristic equation for a

parallel-plate line containing perpendicularly magnetized layers

of gyromagnetic media. Such information allows one to limit the

region in which theeigenvalues are sought and, as a consequence,

to reduce the amount of time needed to carry out numerical

computations.

The approximate value of the lower bound could be also

obtained via variational calculus [6], [7]. However, the result

obtained using this method would depend not only on the

physical parameters of the strata but also on the geomet~ of the

structure. In consequence, a change in the dimensions of the line

or the location of a layer in the structure would yield a different

expression for the lower bound, whereas the formulas derived in

this paper are general because they are valid for the whole class

of structures.

II. DETERMINATION OF THE LOWER BOUND

ON EIGENVALUES

In the theoretical study presented in [4] it was shown that the

electromagnetic wave propagation in a lossless parallel-plate line

filled with perpendicularly magnetized strata of gyromagnetic

media (Fig. 1) can be expressed in terms of the following eigen-

value problem:

lLq-&p=o (la)

B(q) = o. (lb)

In the above equations 1%represents the boundary conditions at

x = XO, x = x~, IL is a linear differential operator whose elements

are given in Appendix I, and 8 and q denote the eigenvalue and

vector eigenfunction, respectively.

In order to determine the lower bound on the eigenvalues of

operator O_we will use properties of positive definite operators

[5], i.e., self-adjoint linear operators for which the inequality

(Ax, x)>O

is valid for all functions .x taken from the domain (X, ( , )). The

eigenvalues of a positive definite operator are positive. Operator

L defined by equations (A2) is not positive definite. However, for

the inner product defined by

(rf, v) ‘~xN[C-’(X)Z4,( X) Ul(X)+ U2(X)IJ,(X)] dx (2)
Xo

where u =col[ul(x), U2(X)] and v= CO1[V1(X), U2(X)], operator IL

is self-adjoint [4].

To find the lower bound on its eigenvalues let us subtract and

add to (la) the term ?l’rp where 8’ is a real constant. As a result

we obtain

o-r#-8’rp+8’rp-8p=o. (3)

Let us denote ~ = IL – 13’ and ~ = C?– 8’. Introducing these sym-

X

t
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bols into (3) we get the following operator equation:

iq–jrp=o. (4)

In this way a new eigenvalue problem is defined. Note that ~ is

a self-adjoint operator. Moreover, the eigenvalue problems (la)

and (4) are equivalent because they lead to an identical set of

eigenfunctions. There is a simple relat:~on between the eigenvalues

8, of u and eigenvalues 3, of ~, namely,

8, =~, + 8’, (5)

Having defined operator ~ let us test the inequality

(irp, rp) > cl. (6)

Using (1) and (A2) together with the definition of the inner

product (2) and integrating the resulting expressions by parts, we

get

(~vjv) =JXN(*(V.K%)’- @eff(x)9; – &9i

Xo

K(x)

+2kO— %v.% + ;+ (v.%)’
p(x)

}
– k:c(x)q)~ – 8’p~ da.

Now we make the following substitution:

K(x)
2kO— ‘(kO~(x)rpl +vXrp2)2

p(x) “v’q’ ‘= p( x)

i:lcyx) , 1
— .— —(V,92)2.

~L(X) 9; – p(x)

Bearing in mind that

p’(x) --w’(x)
Peff(x) = ——

p(x)

we obtain

(h, v} ‘~x’(;;(vx~l)’+~j[ko’(x)~l +VJP212
.x

[

8’
.— k:p(x) + —

6(X) 1 [ }CP;–k$(x)+8’]q;dx.

In the above equations k. is the wavenumber in free space, and

c(x), p(x), and K(x) are the relative permittivity and the diago-

nal and off-diagonal elements of the relative permeability tensor

of the gyromagnetic material, respectively. The scalar operator

VX is used to represent the partial derivative tl/tlx.

We can now exclude the case of negative values of p. It is seen

that in the above expression the first two terms are always



642 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 3, MARCH 1989

(a)

~ency rGHzl ~

(b)

Fig. 2. The lowest order eigenvalues of au asymmetrical ferrite–dielectric–

ferrite parallel-plate line (d; for h2 = 1 mm, h3 = 3 mm; 8$ for hz = O mm,

h3 = 4 mm; M,, =167.11 kA/m, M,3 =139.26 kA/m, H, =159.24 kA/m,

cl = 13.5, ~~z = 2.6, c~ = 16, hl = 1.5 mm). (a) Below the ferromagnetic
resonance. (b) Above the ferromagnetic resonauce.

positive; therefore the inequality (6) is true if both

k:c(x)p(x)+tl’<o

and

k&(.x) +8’<o. (7)

Let us denote by M the greater of the numbers Ml = max(k&~p~ )

and M2 = max(k~c~ ), for k =1,2,. ... N. We may now conclude

from (7) that if only M is finite then ~ is positive definite for

every & < – M, and in such a case all its eigenvalues are positive.

Because the eigenvalues of one operator are related to the eigen-

values of the other, we get, according to (5), the following

expression defining the lower bound on 8::

CSi>-ikf (8)

with M= max(k&~pK, k~c~), k =1,. . . . N.

III. NUMERICAL VERIFICATION

In order to verify the results derived in the previous section an

exemplary structure of an asymmetrical ferrite–dielectric– ferrite

parallel-plate line was investigated. The characteristic equation

for the structure was obtained using the normal field components

approach described thoroughly in [4]. Detailed expressions for

the elements of the transfer matrix for a single gyromagnetic

layer are given in Appendix II. A region in which either WI or P3

is negative was excluded from numericaf computations. The

results are shown in Fig. 2. For the investigated line condition (8)

can be formulated as

8, > – k;q.q for O< f<VH,

and (9)

8, > – k;<3 for~>~[ H,(H, +M,l)]”2

where ~, H,, M,~, and (~ are the gyromagnetic ratio, the internal

biasing magnetic field, the saturation magnetization, and the

relative permittivity of the k th layer, respectively. From the

diagram it is seen that curves 8(~) are situated above the lines

corresponding to the theoretically obtained limits, and accord-

ingly satisfy conditions (9).

IV. CONCLUSIONS

Exact expressions have been derived for the lower bound on

the eigenvalues of the characteristic equation for an arbitrary

multilayered gyromagnetic structure magnetized perpendicularly

to the interfaces between layers. The approach is universal and

allows one to determine bounds on the eigenvalues for a wider

class of lossless structures filled with inhomogeneous anisotropic

medium. The result is general and useful since it enables one to

minimize the cost of numerical computations. The theoretical

predictions found confirmation in a numerical example

APPENDIX I

DEFINITION OF THE ELEMENTS OF OPERATOR U_

Operator L has the following matrix representation:

with

[1

1
Lll=–c(x)vx —v. - kih(x)4x)C(x)

K(x)
L12 = kOc(x)— VX

p(x)

[1K(x)

L21= –vX ko—
~(x)

[1

1
L22=– VX — –k; ((x).

/J(x) ‘“’

APPENDIX II

TRANSFER MATRIX FOR A SINGLE LAYER OF A

GYROMAGNETIC MEDIUM

(Al)

(A2a)

(A2b)

(A2c)

(A2d)

The characteristic equation for an arbitrary multilayered per-

pendicularly magnetized gyromagnetic structure can be obtained

using the method described in [4]. Depending on the combination

of boundary conditions at x = XO and x = x~, the characteristic

equation is the determinant of one of the submatrices of the

global transfer matrix 1, where Z is defined as

z= fim (A3)
~=1

1 f’ 1 is a transfer matrix linking the continuity vector F(l j be-

tween the extremes x,– and x,+_ ~ of the i th layer:

[1
1

T

:7X o 1 z k.

P* [1D:
F(, ) = ‘

1
(A5)

COTJOIf;
o 1 0 ~ v.
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Elements of the transfer matrix Z”) are given by the following

expressions:

q,= ;(m,%ch(w - w(w))

~,=c,; (ch(x,ht) –ch(x3h,))

1

q1=6, +(s,R3$h(A,h,) -sh(x3h,))

1

Z&= er; (R3G1sh(A1h,) – G3sh(A@, ))
1

slAIAj
~,,, (-c~(ii)+ch(A3h,))

T:2 = —

T;2 = ;( – ~3Ch(~1h,) + ~3&~1Ch(~3h,))
1

q, =;(- A3sh(x1h,) +A,sh(A3h,))

1

,( 31Z&=: –A G sh(A1h, )+ G3S1A1sh(A3ht))

T;3 = &1 S1G3sh(A#,) - A3G1sh(A3h1))
21

T;3 = ;(G,sk(A/r,) – GIR@(A, h,))
2

~3 = ~(SIG,ch(A1h,) - G1ch(~,h,))

T;3 = y(ch(w)-ch (w,))
2

T;4 = :(-x,sh(x,h,) +A3ch(A3h,))
21

T;4=:(- sh(~lh,) +R,S1sh(A,h,))
2

q4=+(–ch(A,h,) +ch(A3h,))

2

TJ4 = & - Glch(klh,) + G, SICh(~Jr,))

2

Ml= RJ1~l – ?q M2 = S1G3 – G1

Ic,kosl+ Al tclko + R3A3
G1 = G3 =

k! k!

h,=x, –x, _l

where

(A6)

(A7)

(A8)

(A9)

(A1O)

(All)

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

whereas

s,=–~ [A; +/J,(rs+ k&,)]
011

R3 = k ~p: ~3 (N + ~+ f%%%)
of!

(W2 ~(d -4ko)’’’])”2h3) = j (A2$)

(A23)

(A24)

with

ga = – 8(1+ P,) –2@,K, (A26)

()go= P, ~ + kkp,ff, (~+ kk) . (A27)
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Effects of Gain Compression, Bias Conditions, and

Temperature on the Flicker Phase Noise of an

8.5 GHz GaAs MESFIET Amplifier

C. P. LUSHER AND W. N. HARDY

.4bstract — We have measured the phase noise of an 8.5 GHz GaAs

MES~ET amplifier at temperatures from 1.7 K to 300 K for input powers

from – 30 dBm to well past the 1 dB gin compression point and for

sideband frequencies from 0.1 Hz to 25 klllz. The observed flicker phase

noise was independent of input power, ”evmr at levels producing 4 dB of

gain compression, and also changed very little with bias conditions. The

intrinsic phase noise at low temperatures (observed below 2.17 K, where an

extrinsic effect due 10 the bubbling of @e liquid helium coolant disappears)

was slightly fiigher than that olmeb’ed at rmom terqperatrrre. However, we-,
saw no sign of the @nnatic increase in fucker phase noise at low
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