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that the amplifier can be unstable at F, =19 GHz and when g,
becomes greater than 200 mS/mm (Fig. 5).

If the transconductance g, changes from 145 mS/mm to
200 mS/mm, the theoretical gain curve in Fig. 5 presents a very
high gain around 20 GHz. The stability coefficient K becomes
less than unity in this frequency range and the amplifier oscillates
at 20.5 GHz. The small difference between this value and the
predicted oscillation frequency (F,;) is due to the simplified
model used for the analysis.

To improve the gain, another possibility for distributed ampli-
fier design is to increase the number of cells. To improve the
frequency bandwidth or the flatness of the gain, the same tech-
nique can be used but with smaller transistors.

It is of interest to compare amplifiers with the same total gate
width but with a different number of cells.

Fig. 6 presents the minimum stability coefficient K of different
amplifiers based on the FET equivalent circuit in Section III
(Table II) with g, =250 mS/mm and at frequency f, (eq. (6)).
Two total gate widths have been considered. It can be seen that
to avoid instability, smaller total gate widths have to be used.
However, the lowest value is limited by the decreasing
gain—bandwidth product. Fig. 7 also shows that instabilities
occur with an increase in the number of cells. This phenomenon
is caused by the multiple feedback loops in the amplifier. How-
ever, it is considerably diminished when the losses are increased
where a large number of cells are used.

IV. DISTRIBUTED AMPLIFIER WITH CASCODE PAIRS

It is well known that using cascode pairs increases the gain of
distributed amplifiers. Moreover, the better isolation of this ar-
rangement should attenuate the oscillation phenomenon when
the transconductance is increased. This means that the reduction
of the coupling between the gate and drain lines makes it possible
to avoid oscillations by reducing the gain within the loop.

But another problem occurs in cascode distributed amplifiers.
Indeed, the insertion of transmission line lengths between com-
mon-source and common-gate FET’s is extensively used to in-
crease the gain at high frequency and also to tune the gain
response of the amplifier for optimum gain flatness. But these
line lengths can generate oscillations and therefore must be
carefully chosen as a function of the transconductance of the
active devices.
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V. CONCLUSION

The occurrence of oscillations in distributed amplifiers has
been evaluated. The oscillation mechanism has been elucidated
using a simplified transistor model made up of four elements.

The analysis has been extended to amplifiers whose transistors
are represented by S-parameter derived models. It has been
demonstrated that increasing the transconductance of the transis-
tor can generate oscillations into the loops existing in distributed
amplifiers between stages at frequencies around

1

fovr*\/ZL(C+ng) '

This phenomenon occurs when high-transconductance transistors
are used (HEMT devices, for example) and it can be reduced
using smaller transistors or higher cutoff frequencies.

Improvements in the gain—-bandwidth product can be obtained
with high transconductances but need lower gate-to-drain feed-
back capacitances or other structures such as the cascode config-
uration to reduce the coupling effect between the gate and drain
lines.
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Abstract — A layered gyromagnetic waveguiding structure magnetized
perpendicularly to interfaces between layers is analyzed. The lower bound
on the eigenvalues of the wave equation for this structure is derived using
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the spectral theory of linear operators. The elements of the transfer matrix
for a layer of a gyromagnetic medium are given. A numerical example
confirming the validity of the theoretical results is included.

I. INTRODUCTION

Although layered guides containing gyrotropic material are
extensively utilized in microwave application [1]-[3], the underly-
ing theory is less developed than the state of the art in the
analysis of isotropic structures. For this reason a new, general
approach to the analysis of an arbitrary lossless parallel-plate line
with inhomogeneous gyromagnetic filling was proposed by the
authors [4]. The present paper develops and complements this
analysis, yielding exact expressions defining the global lower
bound on the eigenvalues of the characteristic equation for a
parallel-plate line containing perpendicularly magnetized layers
of gyromagnetic media. Such information allows one to limit the
region in which the eigenvalues are sought and, as a consequence,
to reduce the amount of time needed to carry out numerical
computations.

The approximate value of the lower bound could be also
obtained via variational calculus [6], [7]. However, the result
obtained using this method would depend not only on the
physical parameters of the strata but also on the geometry of the
structure. In consequence, a change in the dimensions of the line
or the location of a layer in the structure would yield a different
expression for the lower bound, whereas the formulas derived in
this paper are general because they are valid for the whole class
of structures.

II. DETERMINATION OF THE LOWER BOUND
ON EIGENVALUES

In the theoretical study presented in [4] it was shown that the
electromagnetic wave propagation in a lossless parallel-plate line
filled with perpendicularly magnetized strata of gyromagnetic
media (Fig. 1) can be expressed in terms of the following eigen-

value problem:
Lo—08g=0 (1a)

B(¢) =0. (1b)
In the above equations B represents the boundary conditions at
X = Xg, X = Xy, L is a linear differential operator whose elements
are given in Appendix I, and 8 and ¢ denote the eigenvalue and
vector eigenfunction, respectively.
In order to determine the lower bound on the eigenvalues of
operator L we will use properties of positive definite operators
[5], i.e., self-adjoint linear operators for which the inequality

(Ax,x)>0
is valid for all functions x taken from the domain (X,{ , }). The
eigenvalues of a positive definite operator are positive. Operator

L defined by equations (A2) is not positive definite. However, for
the inner product defined by

@ o) = [ u() n(x) T (0] de ()

where # = col[u,(x), u,(x)} and o= col[v,(x), v,(x)], operator L
is self-adjoint [4].

To find the lower bound on its eigenvalues let us subtract and
add to (1la) the term 8’¢ where 8’ is a real constant. As a result
we obtain

(3

Let us denote L =1 — 8’ and 8 =& — &'. Introducing these sym-

Lo—8¢+3d¢—38p=0.
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Fig 1. Cross section of a multilayered parallel-plate line filled with gyro-
magnetic media.

bols into (3) we get the following operator equation:
Lo —8¢=0. (4)
In this way a new eigenvalue problem is defined. Note that L is
a self-adjoint operator. Moreover, the eigenvalue problems (1a)
and (4) are equivalent because they lead to an identical set of

eigenfunctions. There is a simple relation between the eigenvalues
8, of L and eigenvalues &, of L, namely,

5=38+8" (%)
Having defined operator L let us test the inequality
Ly, 9)>0. (6)

Using (1) and (A2) together with the definition of the inner
product (2) and integrating the resulting expressions by parts, we
get

’

Ly, )= f{ )(Vm) Jegprerr (%) 97 = (x)ﬁ

( )
+2k —— PV, @ +
Cu(x) T2

()
p(x) s
—k3e(x) 5 — B’q%} dx.

Now we make the following substitution:

k(x)

2kg—— n(x) PV Py = (1x) (ko"(x)q’l +Vx<P2)2

kg (x)
[L(X) q'jl IJ'( )(VV(PZ) .

Bearing in mind that
B(x) ~ K(x)
Pege (X) =
p(x)

we obtain

Lo.oy= f { )(Vx%) +u(1)[ko'<(x)q>1+vxqu]
[koﬂ(x)+ e(x )}(Pl [ 35(X)+8,]‘P%} dx.

In the above equations k is the wavenumber in free space, and
€(x), p(x), and x(x) are the relative permittivity and the diago-
nal and off-diagonal elements of the relative permeability tensor
of the gyromagnetic material, respectively. The scalar operator
Vv, is used to represent the partial derivative 9 /dx.

We can now exclude the case of negative values of p. It is seen
that in the above expression the first two terms are always
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Fig. 2. The lowest order eigenvalues of an asymmetrical ferrite—dielectric—
ferrite parallel-plate line (8¢ for A, =1 mm, sy =3 mm; 8 for s, — 0 mm,
h3 =4 mm; M, =167.11 kA/m, M;=139.26 kA/m, H; =159.24 kA/m,
€ =135, Bey =26, ¢;=16, h =15 mm). (a) Below the ferromagnetic
resonance. (b) Above the ferromagnetic resonance.

positive; therefore the inequality (6) is true if both
kle(x)p(x)+8'<0
and

kle(x)+ 8 <0. (7)
Let us denote by M the greater of the numbers M, = max (k3e, )
and M, = max(kd,), for k=1,2,---, N. We may now conclude
from (7) that if only M is finite then L is positive definite for
every 8’ < — M, and in such a case all its eigenvalues are positive.
Because the eigenvalues of one operator are related to the eigen-
values of the other, we get, according to (5), the following
expression defining the lower bound on §;:

8,>—-M

(8)

Wlth M=max(k(2)€k”'kak§€k)’ k=1, ‘ ’,N.

III. NUMERICAL VERIFICATION

In order to verify the results derived in the previous section an
exemplary structure of an asymmetrical ferrite—dielectric-ferrite
parallel-plate line was investigated. The characteristic equation
for the structure was obtained using the normal field components
approach described thoroughly in [4]. Detailed expressions for
the elements of the transfer matrix for a single gyromagnetic
layer are given in Appendix II. A region in which either p; or ps
is negative was excluded from numerical computations. The
results are shown in Fig, 2. For the investigated line condition (8)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 3, MARCH 1989

can be formulated as
8, > — kiespy,  for0< f<¥yH,

and

)

8> —kie, for f>3[H(H +M,)]""

where ¥, H,, M,,, and ¢, are the gyromagnetic ratio, the internal
biasing magnetic field, the saturation magnetization, and the
relative permittivity of the kth layer, respectively. From the
diagram it is seen that curves 8(f) are situated above the lines
corresponding to the theoretically obtained limits, and accord-
ingly satisfy conditions (9).

IV. CONCLUSIONS

Exact expressions have been derived for the lower bound on
the eigenvalues of the characteristic equation for an arbitrary
multilayered gyromagnetic structure magnetized perpendicularly
to the interfaces between layers. The approach is universal and
allows one to determine bounds on the eigenvalues for a wider
class of lossless structures filled with inhomogeneous anisotropic
medium. The result is general and useful since it enables one to
minimize the cost of numerical computations. The theoretical
predictions found confirmation in a numerical example.

APPENDIX I
DEFINITION OF THE ELEMENTS OF OPERATOR L

Operator L has the following matrix representation:
L L
L = l: 11 12:'
IL21 IL22
1 2
Ly =—¢(x)v, Vs |~ korerr (x)e(x)  (A22)
e(x)
k{(x)

(A1)

with

Ly, = ko‘(")mvx (A2b)
o k(x) .
ILZI - vx[kou(x) :| (A2 )
1
“—22=_Vx[mvx}_k0‘(x)- (A2d)

APPENDIX 11
TRANSFER MATRIX FOR A SINGLE LAYER OF A
GYROMAGNETIC MEDIUM

The characteristic equation for an arbitrary multilayered per-
pendicularly magnetized gyromagnetic structure can be obtained
using the method described in [4]. Depending on the combination
of boundary conditions at x = x, and x = x,, the characteristic
equation is the determinant of ome of the submatrices of the
global transfer matrix I, where I is defined as ‘

N
I=1]19.
i=1

I is a transfer matrix linking the continuity vector F be-
tween the extremes x; and x;"; of the ith layer:

(A3)

R - =T1OF() . (A4)
i i—1
where
1 K, ’
-v, 0 1 —k, D
) €; My )
F® = . { i } . (A5)
0 1 0 _VX €oMo 41,
My
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Elements of the transfer matrix I are given by the following whereas

expressions:
1
= V(X1S1R3Ch(>‘1h,) - )\3ch(}\3h,)) (A6)
1
R,
Téll=€tﬁ(("h(xlhl)_0h(}\3h1)) (A7)
1
1
T3’1=EIH(S1R33h(>‘1hz)“Sh(>‘3hz)) (A8)
1
1 1 '
= €IV(R3G15h(}‘1h1) - G3Sh(>\3hz)) (A9)
1
SiA A
= (= ch(\h,) + ch(Ash,) (AL0)
1%
1
T =”M“(_>‘30h(7\1hz)+ RSN ch(A3h,)) (A1)
1
1 Sl
Tsz=ﬁ(_>‘3Sh(>‘1h:)+>‘15'h(}‘3h1)) (A12)
1
1
I, = 'ﬁ(" AyGysh(Ah,) + G3S1>\1Sh(>\3hz)) (A13)
1
1
1= M—Z(()\1S163Sh(}\lh') - A3G15h(>‘3hz)) (A14)
1
Ty '"‘"ﬁ(GsSh(}‘lh,)—G1R35h(>\3hz)) (A15)
2
1
= -}TJ—(SlG3Ch(>‘lhz) - G1Ch(>‘3hz)) (Al6)
2
GG
Ty = —— (ch(Ash,) = ch(Ash,)) (A17)
2
Ty = 18R (A R,) + Nych(Ash,)) (A18)
. 1
T24=ﬁ(‘3h(7\1h1)+R3S13h(>\3hz)) (A19)
2
(i Sl
7§4="A7(_Ch(>‘1hz)+0h(>‘3hz)) (A20)
2
1
(N =ﬁ(—.G1Ch(A1hl)+G3S1Ch(>‘3hz)) (A21)
2 .
where
M, =R;S\ —A M, = 8,G, ~ G,
K,koS; + A K,ko + RsA
= _O;Ll_.l = %_3_3 (A22)

hl =X T X

- _ 2 12
S, ey [X 4, (8 + ke,)] (A23)
K,
Ry— e e (A 4 8+ K s ) (A24)
1 - " 12
A = {5 [82 +(822 "480) ]} (A25)
with
g2 = 8(1 + ""1) - 2k1§€1”‘1 (A26)
8o =M, ( &+ k(%(zp‘eff,)l[s + k%€,) . (A27)
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Effects of Gain Compression, Bias Conditions, and
Temperature on the Flicker Phase Noise of an
8.5 GHz GaAs MESFET Amplifier

C.P. LUSHER AND W. N. HARDY

Abstract —We have measured the phase noise of an 8.5 GHz GaAs
MESFET amplifier at temperatures from 1.7 K to 300 K for input powers
from —30 dBm to well past the 1 dB gain compressmn point and for
sideband frequencies from 0.1 Hz to 25 kiHz. The observed flicker phase
noise was independent of input power, even at levels producing 4 dB of
gain compression, and also changed very little with bias conditions. The
intrinsic phase noise at low temperatures (observed below 2.17 K, where an
extrinsic effect due 1o the bubbling of the liquid helium coolant -disappears)
was shghtly higher than that obseérved at room temperature However, we
saw nho sign of the dramatic increase in flicker phase noise at low
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